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The design of heating and cooling appliances in buildings in routine cases normally
proceeds on the assumption of a room index temperature which combines the
separate effects of air temperature and of the longwave radiant field in the enclosure.
It is pointed out that the basis for the index in current use in the U.K. and elsewhere
is flawed, and this article is concerned with the logic of setting up a valid index
temperature in its place. The argument depends first on reducing the surface-to-
surface radiant exchange between enclosure surfaces to an approximately equivalent
surface-to-star point exchange, using a least-squares fit. The fit proves to be quite
good. It is next established that to a limited extent the star point temperature — a
fictitious construct —will do duty for the space-averaged observable radiant
temperature in the room. Thirdly, since the index temperature is taken to drive the
radiant and convective heat flows from the room as a whole to one of its bounding
surfaces, the question is discussed as to how reliably these physically dissimilar
mechanisms can be formally merged in this way. Finally, simple expressions are
given for enclosure heat needs in relation to comfort temperature and similar
quantities. The arguments present some innovative features in building heat
transfer.

Notation
(@) Heat inputs

@, combined radiant and convective input from an internal source (W)

@, radiant component from an internal source (W)

@, convective component from an internal source (W)

P Qr/Qt

@; input at surface j due to conduction, convection and surface heating (W)
@,; radiant flux falling on surface j and taken to be absorbed at T, (W)

Q:; heat loss by conduction from 7} to T, (W)

@, heat loss by infiltration from 7}, to T, (W)

(b) Temperatures

T,, local or point air temperature (°C)

T,, volume-averaged air temperature (°C)

T., local observable radiant temperature (°C or K)

T, volume-averaged observable radiant temperature (°C or K)

p,., non-dimensional version of 7}, due to an internal radiant source

v,y Dhon-dimensional version of 7}, due to a non-zero surface temperature
T, radiant star temperature, taken to be an estimate of 7}, (°C or K)

Phil. Trans. R. Soc. Lond. A (1992)
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The basts for a room global temperature 155

non-dimensional version of 7}, due to an internal radiant source
non-dimensional version of 7} due to a non-zero surface temperature
rad-air temperature, composed of 7, and 7, (°C)

dry resultant temperature, 37, +37., or 37, +17., (°C)

area-averaged temperature of surface j (°C)

black-body equivalent temperature of surface j (°C)

ambient (outdoor) temperature (°C)

sol-air temperature (°C)

(c) Geometrical and physical parameters

length of a rectangular room (m)

depth of a rectangular room (m)

height of a rectangular room (m)

area of surface j (m?)

thickness of layer ¢ in wall j (m)

conductivity of layer 4 in wall j (W m™ K1)

convective coefficient at an inside enclosure surface (W m™2 K™?)
convective coefficient at an outside surface (W m™2 K™)
radiosity of surface j (W m™2)

view factor from surface j to surface &

Stefan—Bolzmann constant, 5.67 x 1078 (W m~2 K™%)

radiative heat transfer coefficient, 407% and about 5.7 indoors (W m~2K™)

A;/total surface area of a rectangular room

radiant conductance between 7, and an enveloping black-body surface
radiant conductance between 7}, and the radiant star node 7}

estimated as 1—b;—3.54(bf —0.5b;) +5.03 (b} —0.25b;)

emissivity of surface j

(1—¢;)/e;+ 47"

fabric transmittance between 1; and Tj (Xd;;/A;+1/he,)™ (W m™2 K™1)

overall transmittance (U value) between 7}, and 7} via

Ty =1/ (B b+ hey) +1/£171 (Wm™ K™)

(d) Conductances

direct geometrical radiant conductance between black-body surfaces j and %
(m?)

total geometrical radiant conductance between 7}, and all enclosure surfaces
(m?)

exact overall geometrical radiant resistance between surfaces j and & (other
surfaces being adiabatic) (m™2)

corresponding approximate overall resistance using a star-based network (m™2)
convective conductance between 7., and T; = 4;h,; (W K™)

radiant conductance between 7, and T} = A, E;h, (W K™)

= ZSj (W K_l)

=X0; (WK™

=C/8

conductance between 7, and 7,, = (1+a)C (W K™)

. Trans. R. Soc. Lond. A (1992)
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156 M. G. Davies

fabric conductance between 7j and T, = 4, f; (W K™)

L, fabric loss conductance between 7}, and T}, via T} = A;u; = (1/(S;+C;) +1/F)™"
(WK™

L total fabric loss conductance = XL, (W K™)

V  ventilation conductance between 7, and 7, = volume throughput of air

(m® s7!) x volumetric specific heat (1200 J m™3 K1) (W K1)

1. Introduction

Heat is transferred to and from the air in a room by the process of convection to the
bounding surfaces of a room and to furnishings and occupants, and in particular heat
is transferred by convection from hot surfaces to the air. Cool air may infiltrate from
outside to mix with the room air and be heated before being lost from the room and,
conversely, a ducted hot or cold air supply mixes with the room air and is lost at
room air temperature.

The mechanism of radiation performs a similar function. Heat is exchanged by
radiation between the cool surfaces of a room and any hot surface within it or
forming part of the bounding surfaces. Radiation will be lost through an aperture
such as an open window, a process similar to that of infiltration but of less
significance.

A measuring device such as a thermometer senses the air temperature, intercepts
the radiant field and records a value intermediate between strict air temperature at
that point and the value it would indicate due to radiation in the absence of air.

Some general measure of room temperature is needed in connection with the design
of room heating and cooling systems: it may serve to express temperature from the
point of view of human thermal comfort, or it may serve as the temperature which
drives the heat flow by conduction through the building fabric to the exterior and
also, in effect, drives the loss due to air infiltration.

The traditional measure of temperature, in use in the U.K. up to the 1960s, was
a so-called air temperature, 77, say. All heat was taken to be input at 7', whether by
convection or radiation, all heat was driven from the room both by conduction and
ventilation by 7%, and 7", served as the measure for purposes of thermal comfort. It
is termed here ‘so-called’, because 77, though often referred to simply as ‘air
temperature’, did in fact make some sort of allowance, willy-nilly, for the radiant
field: the heat flow conductance between 7', and any room surface was always taken
to consist of both radiant and convective components of roughly equal magnitudes,
and clearly, ‘air temperature’, strictly interpreted, cannot drive radiation, nor can
radiation be input at it. Despite these objections, 7%, was and indeed remains a
generally useful, if rough and ready, concept.

During the 1960s, workers at the U.K. Building Research Station were concerned
with the overheating experienced in many of the much-glazed buildings that were
fashionable at the time. They set up a new index temperature, ‘environmental
temperature’, 7, which was intended to take formal account of the radiant field, a
feature absent in 77,.

By using conventional values for the convective heat transfer coefficient of A, =
3 W m™2 K™, the radiative coefficient A, of 5.7 W m~ K~ and surface emissivities of
0.9, T,; was related to the strict air temperature 7; and the area-weighted mean
surface temperature 7, as

Ty = ¥ + 313

Phil. Trans. R. Soc. Lond. A (1992)
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The basis for a room global temperature 157

(The coefficients totalled unity, but were otherwise approximate.) The associated
thermal model involved explicit mention of 7};, and of a conductance of 4.5 X4 (units

W K1) between T}, and 7T;, where ¥4 denoted the total room surface area. Dry
resultant temperature 7}, the measure of thermal comfort, was expressed as

T = 3T +3Tu

and its value was located on the 4.5 ¥4 conductance. A convective input of heat @,
was taken to act at 7}; and an input of long-wave radiation @, was treated as an input
of 3Q, at T, together with a withdrawal of 3@, from T;. The heat loss by ventilation
was expressed using a conductance V between 7; and ambient at 7}, (V is the product
of the volume air flow rate (m?®s™!) and the volumetric specific heat of air
1200 J m~® K™1). The heat loss by conduction to ambient was expressed as the
conductance X AU acting between 7; and T, where U denotes the conventional U
value associated with area 4.

This model, the ‘environmental temperature model’, was taken over for
professional use by the Institution of Heating and Ventilating Engineers (now the
Chartered Institution of Building Services Engineers (CIBSE)) in the update of its
1970 Guide (IHVE Guide 1971), mostly in §A5. Its treatment was substantially
changed in the 1979 update (CIBS 1979) and incorporated with little further change
in the hardback version of 1986 (CIBSE 1986).

Unfortunately, the fundamental principles upon which this model is based are
invalid (Davies 1986, 1989). The arguments include a number of more or less
independent errors which stem from the fact that although 7, was defined in terms
of mean surface temperature 7}, it was interpreted as though 7, denoted mean
radiant temperature 7};. These are in fact quite separate concepts: 7}, derives from
measurements made at the bounding surfaces of a room, while 7}, like air
temperature, derives from measurements made within the space of the enclosure.
There are problems too over the status of dry resultant temperature, the measure
needed for appraisal of the thermal comfort the enclosure provides.

Over several years I have evolved a series of developments leading to a room index
temperature which validly combines the effect of air and radiant temperatures (see
Davies 1979, 1983). Some matters considered a decade ago have faded in importance
and improvements in the presentation of others have been made. This article aims
to bring these developments together into a single, definitive document, and as such
it may serve to support the methods to be promulgated in the forthcoming update
of the CIBSE Guide.

The argument falls into four sections. (i) The transformation of the pattern of
surface—surface radiant exchange between the surfaces of a room to a surface-star
point form (§2). (ii) The relationship between this star point temperature and
observable radiant temperatures in a room (§3). (iii) The merging of the radiative and
convective processes in a room so as to form a room index temperature, and its
properties (§4). (iv) Finally, working formulae are given to express heat need in terms
of comfort temperature (§5).

2. Radiant exchange in an enclosure

This section presents the fundamentals of radiant exchange in an enclosure and
goes on to show how the surface to surface pattern of exchange can be represented
with good approximation by a pattern centred on a radiant star node.

Phil. Trans. R. Soc. Lond. A (1992)
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158 M. G. Davies

(@) Assumptions for radiant exchange

The standard assumptions that are made to discuss radiant interchange between
the surfaces of an enclosure are the following.

1. Each surface in the enclosure is supposed to be isothermal. If the temperature
varies significantly over say the floor of a room, it can be subdivided into smaller
substantially isothermal areas.

2. Each surface is supposed to be grey, that is, there is negligible variation of
emissivity with wavelength.

3. Emissivity is assumed to be equal to absorptivity, and each is equal to one
minus reflectivity.

4. Tt is assumed that when radiation is incident upon a surface, the reflected
fraction has a uniform angular distribution, i.e. the surface reflects diffusely.

5. Tt is similarly assumed that the radiation emitted by the surface has a uniform
angular distribution.

6. Finally, it is assumed that the radiation incident upon a surface is distributed
uniformly over it, so that there is no focusing.

(b) The thermal circuit formulation

Radiant exchange can be expressed elegantly in the notation of a thermal circuit,
as was first shown by Oppenheim (1956). We consider an enclosure consisting of
several surfaces that exchange radiation one with another. The heat flow to or from
a particular surface, surface 1 for example, may be due to conduction from behind
the surface, by convection from the air within the enclosure or from some local
heating, for example by electrical heating. Suppose that the net sum of these
mechanisms is denoted by @, and that it is to be further transferred by radiation.
Suppose that the radiant flux leaving surface j is W, (the radiosity) with units of watts
per square metre. The radiant flow from surface j falling on surface 1 is W, 4, F},,
which equals W; 4, Fy;, where F; is the view factor from surface 1 to surface j. (We note
the two relations for view factors, the first, 3F;; = 1 expressing the idea that all
radiation leaving surface 1 is intercepted by surrounding surfaces, and that 4, F; =
A; F;; and denotes the geometrical conductance between surfaces 1 and j.) The total
energy arriving at surface 1 is accordingly the sum of all such radiant terms, together
with Q.

The radiation leaving the surface is by definition 4, W, (expressible as 34, F,, W;)
and it consists of the flow emitted from surface 1 due to its temperature, 4, ¢, o771,
together with the fraction (1 —e¢,) of the incident radiation which is reflected from the
surface.

Heat balance at the surface accordingly requires that

Q+XW A, Fyy = A, e,0T1+(1—€) W4, Fy,
which must equal 4, W, or XW, 4, ;.
Two results follow : -
Q=4 6(1—¢) (cT1—W)
and Q, = XA, F (W, —W).

These relations can be put into circuit notation as shown in figure 1.

The driving potentials are the surface emittances, 07" here or o7 generally, and
the radiosities W, which might be thought as having the status of temperatures, not
heat flows, despite their units (W m~2). The geometrical conductances associated

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1 -
surface 1 w, Figure 2 W,
(7T14 W,
A AN oW,
Ql er VV4

Figure 1. Oppenheim’s thermal circuit formulation for radiant exchange at surface 1.

Figure 2. The thermal circuit formulation for radiant exchange at surface 1, together with the
radiation @, incident upon the surface from an internal radiant source as an input at the radiosity
node W,.

with the surface emissivities are 4,¢;/(1—¢;) and the conductances associated with
the configuration of the enclosure surfaces one with another are 4, Fj,.

For a black-body surface, the emissivity is unity, the emissivity conductance is
infinite, and the W; and 7% nodes coincide.

The Oppenheim formulation is not usually presented so as to include the presence
of a source but can be easily modified to do so. Suppose the enclosure contains a
source of long-wave radiation which emits ¢, W. The radiant fraction of the heat
output from a 100 W bulb is an example. Such a source is driven by a pure heat flow,
not by temperature. (Only ambient temperature in fact acts as a pure temperature
source.) Thus the surface temperature and area of the source are not relevant to its
output of radiation.

Suppose that the flow @,, falls on surface 1. One approach is to note that the
fraction o = € is absorbed ; the fraction (1 —e) is diffusely reflected, is partly absorbed
at the other surfaces and is partly reflected so that some fraction is reflected back to
surface 1; the process is repeated. The total flow to 4, is the sum of the absorbed
fraction of an infinite number of such multiple reflections.

An alternative approach is derived from the idea that radiosity, the radiant flow
from a surface (surface 1 say), in the circuit formulation becomes a flow to the node
W,. The radiant flow @, from the source incident upon 4, is a negatively directed
contribution to the radiosity and so the whole of @, can be treated as though input
at W, rather than being part absorbed/part reflected at the surface node o7’ itself.

Thus in this formulation, the net effect @; of conduction, convection and surface
heating at surface j acts at o7}, and the radiation @,; from an internal source incident
on the surface acts at W,. See figure 2.

(In Appendix A, the two approaches are shown to lead to the same result.)

(c) Net conductance between two nodes
For future development, we need to know the net resistance or conductance
between any two nodes j and k describing conditions in a rectangular enclosure.
The view factors between the surfaces of a rectangular room are given below.
The view factor F,, between two adjacent surfaces of dimensions b X unity and
¢ X unity is given by
F,. = (1/(mb)) {4[6*Inb®+c*Inc? + (b +c*—1) In (b>+c*+ 1)
—B*—1)In (b>+1)—(c2—1)In (c*+ 1) — (b*+¢?) In (b*+c?)]
+barctan (1/b)+carctan (1/c)— (b2 + ¢?): arctan (1/(b%+ c2)?)}.
Phil. Trans. R. Soc. Lond. A (1992)
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The reciprocity relationship b (unity) £}, = ¢ (unity) F,, is apparent here.
The view factor F,, between two opposed surfaces in a rectangular room, each of
dimensions b x ¢ and separated by unit distance is
By = (1/m){(1/(be) In [(6*+ 1) (c*+ 1)/ (6% +¢*+ 1)]
+(2/b) (b2 + 1) arctan [¢/ (b%+ 1)5]— (2/b) arctan (c)
+(2/c) (c®+ 1)farctan [b/(c2+ 1)3] — (2/c) arctan (b)}.
In this case, F,, = F,,,. It can be shown that the sum of the view factors from one

surface to the other five is unity. There are nine numerically distinct view factors.
The direct geometrical conductance between nodes W, and W, is given as

G = Gy = A, Fy, = AL By
There are 15 such links. Of these,
G (north, floor) = G (north, ceiling) = ¢ (south, floor) = ¢ (south, ceiling),

and there are two further sets of four. On the other hand, G (north, south) is unique.
Thus the total of 15 is made up as 3 x4+ 3 x 1 conductances, and the set contains
3+ 3 = 6 numerically distinct values.

The overall conductance between nodes j and k, however, is greater than G, due
to the effect of the 14 other paths in series or parallel. To evaluate it, suppose that
a heat flow @, due to conduction or surface heating arrives at W,. Continuity requires
that "

GIZ(I/VI_ I/Vz)“‘013(1’1/1_I’Va)"'01’14(1/171_ M)"'Gls(I’Vl_M)"'Gw(u/l_ I/Ve) = Ql'

There- are similar relations at the other five W, nodes so that we have

F Gu _Gl2 _G13 _Gu _G15 _016— ﬂ’Vl— FQI—
- G21 + Gzz - G23 - G24 - st - Gze I’V2 Q2
- G31 - G32 + G33 - G34 - Gas - Gae W3 =| Qa !
- CTY41 - G42 - G43 + G44 - G45 - G46 I’V4 Q4 ,
- G51 - Gsz - G53 - G54 + Gss - Gse I’Va Qs
. GGI _Gsz _G63 - G64 _Gss +Gse i _I’Ve_ _Qsa

where (;, denotes the sum of the conductances attached to node W,, that is
Gy =Gt G+ Gy + 05+ G,

and similarly for terms on the principal diagonal. The off-diagonal elements are the
negatives of the conductances linking the nodes concerned.

These equations are not linearly independent since if ¢, to @, were independently
assigned, as they can be, @; must by continuity equal —(Q,+Q,+ @5+ Q,+Q;).
Accordingly we can without loss of generality make W, = 0, and write

W H, H, H, H, Hy; @,
W, Hy, H,, H,, H, Hy @,
W, | = Hy, H,, Hy, H, Hy Qs |
W, H, H, H, H, Hy Q4
W Hy, H,, H,, H;, Hy Qs

where the H matrix is the inverse of the G matrix omitting row and column 6.

Phil. Trans. R. Soc. Lond. A (1992)
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W

@ ! Jid

(®)
Wis
W. W,
5

W, W,

Figure 3. (a) Surface to surface radiant links in a black-body rectangular enclosure
(the ‘delta pattern’). (b) Surface to starpoint links.

Now the total resistance between nodes 2 and 4 say is by definition the difference
in radiosity between them when @, =+1W, @, =—1W and Q,, = @,, = @, =0.
We denote this resistance by RZ,. (The 4 denotes the fact that the resistance
concerned is that due to a surface to surface pattern of linkages which is a generalized
‘delta’ configuration.)

Thus Ry, = (W,—W,)/1 = Hyy—Hyy—Hyp + Hy,.

Since W is set to zero, the resistance between W, and W is found by setting @, to
unity and @, to @, to zero.

So Ris = (W, —Wy)/1 =H,,.

The other resistances are found by using one or other of these expressions. There
are six numerically distinct values for the resistances. (As an alternative to singling
out node 6 for special consideration, we could have supposed instead that node 6 was
linked by an arbitrary conductance, external to the radiant network, to a node at
zero temperature.)

(d) The star conductances or resistances

There is an idea of long standing that the exchange of radiation between two
surfaces, surfaces 2 and 4 say of a rectangular room, can be estimated by supposing
that all radiation is exchanged via a central node, the radiant star node. The exact
network and this approximate and quite fictitious equivalent network are shown in
figure 3a, b.

The central question of §2 is: how can the star links be chosen so that the
equivalent network best mimicks the external effect of the parent delta network ?

Now the flow of energy by radiation from a black-body surface of area 4, at 7] to
a second black-body surface at 7, which completely envelops it is

Q=A4,0(T1=T3) = A,(W, = W),
and so the resistance between these nodes is
Ry = (W—W,)/Q@ = 1/4,.

It follows that the resistance between W, and the radiant star node W, must be less
than this, and we shall write it as f,/4,, where of course S, is less than 1. The total
resistance between nodes 2 and 4 say of a rectangular room is then f8,/4,+f,/A4,, or
generally,

Rj = B/ A;+ Br/ Ay
Phil. Trans. R. Soc. Lond. A (1992)
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Also G, = 1/R},, the star denoting that the resistance or conductance concerned
relates to the equivalent star circuit. Again, there are 15 values for R} for a
rectangular room.

(e) The optimal star links

The g values have to be adjusted so that the external effect of the star circuit
resembles that of the delta circuit as closely as possible. This amounts to a
generalized delta to star transform. For a ‘three surface enclosure’ (a very long ridge
tent for example), this transform can be exact. It can be shown that

ﬁ — Al G23
! G12 GZ3 + G23 G31 + G31 G12

ete.

If the enclosure is a sphere, so that the areas A, 4,, ... form patches on its surface,
an exact delta to star transform is also possible, regardless of the number of areas
into which the spherical surface is divided (see Davies 1990a).

For a rectangular enclosure, however, the transform cannot be exact: no star
configuration can achieve the same external effect as the parent delta circuit. We
require some measure for the difference in their responses and we choose for the
purpose the sums of products,

S:

p

M e

6
Y (Gfk-G;‘Ic)(R;‘Ic_R?Ic);
d=1 k=j+1
making a total of 15 terms. The expression has the following properties.

1. Either right hand term represents the difference between the exact and star
value for the link between nodes j and k.

2. Each product is positive, regardless of whether R} is greater or less than Rf}.

3. Each product is dimensionless; it does not favour a difference expressed in
either resistance or conductance form.

4. Since S, represents a sum involving all possible combinations (15) of links
between nodes, it provides a single positive measure to express the difference in
response between the delta and star configurations.

S, depends on the values chosen for the fs and by systematically adjusting them,
a minimum value for S, can be found. The resulting star circuit can then be described
as the ‘optimal’ star circuit to express the radiant exchange between the surfaces.
There are six £ values in a six-sided enclosure but if the enclosure is rectangular,
there are only three distinct values. Formally we have to find the values of f; such
that 9S,/98; = 0, for values of j = 1,2,3.

The procedure to do this is sketched in Appendix B. It was applied to a series of
enclosures of fixed height # = 1, of length 7 = 10°, 10%!, 10%2... 10" (a series of 11
values), and depth d = 107°, 107°!, 107%2,..107*° (also 11 values). When | =d =
h = 1, the enclosure is of course cubic. With increase of [ alone, the enclosure assumes
the shape of a square-sectioned corridor; with decrease of d alone, the enclosure
becomes square-‘tile’-like, and with increase of [ and decrease of d, it looks like a
plank on edge.

It turns out that f; values generated by computations on the 121 enclosures are
quite closely determined by the fractional area

b; = 4,/(total enclosure area).

The distribution is shown in figure 4.
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 4. Optimal values of the fractional resistance §, between the radiosity node W, and the
radiant star node W,, against fractional area b, = 4,/34,. The points refer to enclosures determined
by I/h = 1.000, 3.162 and 10.000, and d/kh = 1.000, 0.316 and 0.100, which provide 27 points,
some of which are coincident. The full plot of 363 (=3 x 11?) points shows very little scatter for
0 < b, <0.11 and 0.30 < b; < 0.45.

(f) A regression equation for the f values

A first approximation suggests that 8; & 1—b; but it is clear that the £ values have
some cubic dependence on b;. To set up a regression equation, we note two limiting
conditions.

1. In a room where [ and d are each very large in relation to A, the total resistance
between floor and ceiling is simply 1/4,,, so the resistance to the star node is half of
this, that is B, =1. At the same time, 4; tends to half the total area. Thus the
regression line must pass through (b =14, 8 =3).

2. If I and d are each very small compared with %, the resistance between the floor
and the rest of the enclosure is 1/4,, as before, but the resistances between the
vertical walls and W, is much smaller than that between the floor and W,,. Thus the
resistance between the floor and W, itself tends to 1/4;. At the same time, the
fractional floor area tends to zero. Thus the regression line passes through (b =0,
p=1).

An equation of cubic form satisfying these conditions is of form:

By = 1=b;+ 0, (b3 —3b;) + oy (b —3by)-

A least-squares fit on the above enclosures provides values for the coefficients o,
and o, and we have

B, = 1—b,—3.54(b2—1b,) +5.03(b3 —1b,).

The standard deviation between f; as found by the optimization procedure (the
original values) and g; values as subsequently estimated from the regression equation
is 0.0068.

It should be mentioned that for a cubic enclosure # = 2 exactly for each surface.
This is easily checked from symmetry. For a cube, this value should be used and the
cubic case was excluded in evaluating the regression coefficients. In fact the
coefficients are practically the same with or without the cubic case, but the regression

Phil. Trans. R. Soc. Lond. A (1992)
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164 M. G. Davies

equation provides a relatively bad estimate for § for a cube, 0.844 as against the
correct value of 0.833.

(9) How good is the transformation ?

Although the above procedure yields the ‘best’ star configuration, that does not
of itself mean that the star circuit closely mimicks the delta form. Two checks are
available; in each case we can use either the f; (original) values or the 8; (estimated)
values.

(i) The ‘two temperature’ enclosure
Consider an enclosure with black-body surfaces. Suppose that one surface, the floor
say, is at one temperature and all the others are at some other common temperature.
In this case, the conductance between the floor and the common surface is A4;,.
We can write down an estimate of this quantity as found by using 8 values. We
define G, as the total conductance from W, to the enclosure:

G = 2(4,/ B+ 4,/ B+ A4,/ B).

The difference between the estimated and exact conductances between the floor
and the common surface is then

[(A1//7’1)‘1 + (Grs "—Al/ﬂl)_l]_l _Al

and the difference in resistances is

[(Al/ﬁl)_l + (Grs _Al/l[))l)_l] - 1/A1~
The negative of the product of these quantities,

/flGrs Grs_Al/ﬂl
= —|— -———2,
PTG —A 8 BG

provides a non-dimensional, necessarily positive, measure of the difference. There are
three such quantities for the enclosure, associated with the floor, the north and the
east walls (the ceiling difference is identical with the floor difference and similarly for
the south and west walls). The quantity

8y = ((p1 + P2 py))*
is the root mean product deviation between the exact and star versions of the link
between one surface and the remaining surfaces of the enclosure. The subscript 2
corresponds to the ‘two-temperature’ enclosure. § should have a further subscript to
denote whether it is based on the original # values (subscript o), or on estimated f
values (subscript e).

(ii) The ‘six-temperature enclosure’

In the above test, five of the six star links were lumped to find the link between
W, and the common surface. A more severe test is that based on the difference
between the 15 individual pairs of nodes as expressed by S, above. We can define a
further 0 as

86 = (%S p)%7

which is of course the root mean product deviation between the exact and star
versions of the net link between node j and node k. The subscript 6 denotes that links
are considered between all 6 nodes individually, and again it can be based on original
and estimated g values.

Phil. Trans. R. Soc. Lond. A (1992)
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The basis for a room global temperature 165

Table 1. Various measures of the accuracy with which a star circuit can represent radiant exchange
in a rectangular room

(The measures in each column are d,,,d,, (for a ‘two-temperature’ enclosure), &, 8¢, (for a ‘six-
temperature’ enclosure) and 4., and 4, for the six-temperature enclosure. Values are in
percent.)

U/h: 1.00 1.58 2.51 3.98 6.31 10.00
d/h

1.00 0.00 0.07 0.20 0.30 0.37 0.43

0.00 1.10 0.76 0.51 0.64 0.90

0.01 0.97 1.64 2.08 2.37 2.56

0.01 1.42 1.75 2.13 2.48 2.76

0.00 2.50 3.44 3.93 4.12 4.16

—0.01 —0.94 —1.90 —2.64 —3.62 —3.33

0.63 0.03 0.09 0.19 0.27 0.30 0.30

1.12 0.90 0.65 0.65 0.85 1.05

1.05 1.53 1.86 2.08 2.24 2.35

1.49 1.72 1.95 2.20 2.42 2.61

3.52 4.08 4.13 3.92 3.79 4.04

—0.00 —1.42 —2.00 —2.96 —3.68 —4.18

0.40 0.10 0.19 0.25 0.26 0.23 0.18

0.84 0.65 0.59 0.70 0.87 1.01

1.72 1.83 1.80 1.76 1.77 1.81

1.87 1.92 1.91 1.92 1.97 2.04

4.15 3.73 3.13 2.74 3.25 3.57

—0.59 —1.42 —2.11 —2.63 —3.01 —3.26

0.25 0.29 0.35 0.35 0.31 0.26 0.23

045 0.31 0.41 0.58 0.72 0.81

1.86 1.74 1.53 1.36 1.28 1.27

1.92 1.79 1.61 1.47 1.41 1.40

3.15 2.91 2.34 2.20 2.66 2.95

—0.99 —1.38 —1.67 —1.87 —2.00 —2.10

0.16 0.41 042 0.38 0.32 0.27 0.24

0.08 0.31 0.49 0.61 0.68 0.73

1.66 1.46 1.21 1.01 0.90 0.86

1.70 1.52 1.29 1.10 0.98 0.94

3.04 2.70 2.14 1.71 2.06 2.29

—0.88 —0.99 —1.06 —1.10 —1.13 —1.15

0.10 0.44 0.42 0.36 0.29 0.24 0.20

0.45 0.56 0.62 0.66 0.67 0.68

1.36 1.16 0.92 0.73 0.62 0.57

1.43 1.25 1.03 0.84 0.72 0.66

2.67 2.31 1.80 1.30 1.52 1.67

—0.58 —0.58 —0.77 —0.89 —0.95 —0.99

It is also useful to know what the largest fractional error in the links may be. We
define 4 as (Rf, —R},)/Rf,. 4 is numerically small and may be positive or negative
and we define the extreme values as 4., and 4.

Values for all these measures — 0,5y, 0ges Ogs Oger Amax a0 4 i, — are given in table
1 for half the set of [ and half the set of d values mentioned above. All values are
expressed in percent. (Thus 8, for a cube is found to be 8.0 x 107® and the value of
0o @s & percentage and expressed to two decimals becomes 0.01 as shown in table 1.)

Phil. Trans. R. Soc. Lond. A (1992)
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166 M. G. Davies

(h) Discussion

As will be seen from the first two entries for each enclosure in table 1, the star
circuit represents the behaviour of the parent well when we are concerned only with
the exchange between one surface and the other five taken to be at a common
temperature. Errors amount to little more than 1%. As would be expected, the error
is usually a little larger with estimated than with original 8 values, but there is no
logical reason why this must be so.

As regards the links between individual nodes (entries 3 and 4), average fractional
errors of up to 3% are found. &g values are greater than d, values since positive and
negative differences tend to cancel in forming J,, but not in forming d;. Clearly, a
value of §; found by using estimated f values must now be greater than J, using the
original optimal £ values and this will be seen to be the case, though the deterioration
is not very marked.

The extreme fractional errors (entries 5 and 6) must be greater than what is
virtually their root mean square value, d;,, and again the table bears this out.

The fractional errors shown in the table are quite modest in relation to the
uncertainties that appear in analyses of building heat transfer and the delta-to-star
transformation can be described as satisfactory. I did not develop this method,
however, to simplify radiant exchange as such : the exact approach does not present
any particular difficulties and a simplification is not needed. Rather, this procedure
is the first step toward the evolution of a room global temperature and before this
can be done, we have to examine what meaning can be attached to the radiant star
node W, which so far cannot be said to have any physical status. The star circuit
cannot, provide any facilities not provided by the parent circuit; thus W, is not
accessible and long-wave radiation, which can legally be treated as input at the W,
nodes, cannot be input at W,. That is in effect, however, what we are going to do,
and its justification is the task for §3. Before doing that, however, it is convenient
to linearize the driving potentials.

(¢) Linearization of the driving potentials

According to conventional theory, heat flow through solids is strictly proportional
to temperature difference, and convective transfer too is at any rate approximately
proportional to this difference. Long-wave radiant transfer, however, is proportional
to differences in (temperature)?. In order that mixed mode transfer calculations can
be made without complication in room heat transfer, it is usual to suppose that
radiant exchange too is proportional to difference in (temperature)!, and provided
these differences are not large, the practice is satisfactory. (Any error is simply one
more in calculations fraught with uncertainty.) Two steps are needed.

1. From each driving potential o7} or W,, subtract some representative room
potential, W, say, if we are handling a star circuit. This leaves the heat flows in all
links unaltered.

2. We can express W, as oT’j;, where T}, is the black-body equivalent temperature
of surface j, and W, as oT75,. A heat flow @, can thus be expressed as

Qj = A](VV] - I/I/;‘s) = Aj O-(T;lb - Tﬁs)
= Aj [0'(7;'1) +13s) (T]gb+ 1)1 (7;1) —Tis)

= Aj hrj(q;'b - ﬂs)’
Phil. Trans. R. Soc. Lond. A (1992)
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where ey = [Ty + ) (T + T2)].

No approximation has been made, and the heat flow is now proportional to a
temperature difference, (7}, — 7;5). However, h,; depends on 7}, a global variable, and
upon the special temperature T,,. Some T}, values must lie above and some below 7},
but this variation is small compared with their absolute values and if this is ignored,
we can assume a global value of &, as

h, = 40T%,.

With a typical room value of 7} of 20 °C or 293 K, %, is about 5.7 W m™2 K™1.

Division of the driving potential difference by 4072, implies that we must multiply
the conductances, hitherto expressed in units of m?, by 047% or k., so as to give the
conductances in the physical units W K™, This applies of course to both the
conductances deriving from room shape (the product of the delta to star transform)
and the emissivity conductances, which are the same in either formulation.

It will be convenient from now on to work in terms of linear temperatures and
physical conductances. The total physical conductance between the surface node 7;
and 7}, will be denoted by S; (units W K™).

1 _1-¢ 5
S, Ajeh, Ak
or S;=A;E;h,, where 1/E;,=(1—¢;)/¢;+p;

3. The space-averaged observable radiant temperature

The previous section dealt with a transformation of the radiant exchange in an
enclosure, leading to the formulation of a radiant star temperature, 7,,. As was
mentioned, the quantity W, and the temperature 7}, derived from it, are fictitious
constructs and have no physical significance. Yet 7, clearly must be some function
of the radiant field. This section is concerned with the question as to what physical
significance, if any, we may attach to it. It will be demonstrated that 7, may serve
as an estimate of the average observable radiant temperature 7}, in the enclosure.

First, a note about ‘large’ and ‘small’ conductances. The floor of a room might
have an area of say 20 m2. With a value of A, of 5.7 W m~2 K~! and an emissivity of
0.9, the value of S;, would be around 100 W K. The floor convective conductance
is likely to be around 60 W K. These conductances will be regarded as ‘large’. Now
temperature measurement is typically made with small devices. The radiant
conductance between a thermometer bulb of 2 mm diameter and the room is of order
0.0001 W K™* and the convective conductance is of the same order. These will be
regarded as ‘small’. The areas associated with room furnishings and with occupants
too can be regarded as ‘small’ compared with surface areas of the room itself.
Perceptions of thermal comfort, whether reported by subjects or related to
objectively observed measures, must thus be associated with links which are very
much smaller than those concerned with the bulk movement of heat, of order
kilowatts, within and from the room. Although studies in human thermal comfort
have been conducted since the 1920s, attention does not appear to have been drawn
to this distinction. For consider ‘dry resultant temperature’ 7;, which is taken as a
measure of the comfort temperature in a room. It is usually expressed as

T, =T +3T,
Phil. Trans. R. Soc. Lond. A (1992)
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where 7], is the mean air and 7} the mean radiant temperature in the room, without
any further speculation of just how 7} is linked to these quantities. If the expression
is put into thermal circuit form, 7, could be modelled as linked to 7} and 7, either by
two equal and large conductances, or by two equal and small conductances. We can
reject the large conductance case, however, by noting two points.

1. The mean radiant and air temperatures in a room only interact via their
respective exchanges with the large bounding areas of the room ; their interaction via
furnishings, as distinet from bounding surfaces, is much smaller; large conductances
to 7}, in a thermal circuit would provide an invalid additional link between 7}, and 7.

2. A large heat input, several kilowatts, may be expected to lead to a modest rise
in either air or surface temperatures in a room; by contrast, the application of 1 kW
to a thermometer bulb will generate a very high temperature there. Clearly, if 7, is
to be included in a thermal circuit, it must be linked by low conductances consistent
with generation of a high temperature if such a heat flow were applied at 7}.

Thus we have to describe 7, as a low conductance or high impedance node, while
the nodes describing surface and air temperatures are high conductance, low
impedance nodes.

(@) The average observable radiant temperature in an enclosure due to an internal
radiant source

To arrive at a measure of the radiant temperature in a room, we suppose that the
walls are black-body surfaces at a reference temperature of zero. The room will be
supposed to be air-free to remove the question of convective exchange. A sensor such
as a thermometer placed anywhere in the room will register a local or point radiant
temperature 7}, of zero. Suppose now that a source of longwave radiation of strength
@, W is placed say at the centre of the room. The sensor will now record a high
temperature when close to the source and a low value when remote from it; there
must be a space or volume-averaged value 7},. To find 7}, we suppose the sensor to
be spherical of radius r so that it intercepts radiation from the source on a cross
section mr? and absorbs a fraction a. It reradiates this energy to the walls at zero from
its full area of 4mr®. Now the intensity of radiation passing through a spherical
surface of radius R centred on the source is §,/(4nR?). The temperature 7, recorded
at a point distance R from the source is given by the relation

(Q,/4nR?) nria = ednr®h (T, —0).

The volume-averaged value of 7T,,7.,, is found by summing such values over

locations in a regular three-dimensional grid, or more generally as

1., = f”ﬂpdxdydz/”fdxdydz.

It is convenient to remove the effect of the size of the enclosure by expressing 7}
in non-dimensional form as T h

— _rv'r A
ﬂl‘V Qr Z

where X4 denotes the total area of the six surfaces of the enclosure. Since R? =
22+ y%+2%, measured from the source, and a = ¢, we have

o 2 e o

Phil. Trans. R. Soc. Lond. A (1992)
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Table 2. Values for the non-dimensionalized observable radiant temperature due to a radiant source
@, in an enclosure

(First row, ., (centre), source at centre; second row, f,, (S wall), source at the centre of the I x &
wall; third row, g,, (W wall), source at the centre of the d x b wall; fourth row, g, the value found
by supposing that @, is input at 7},. For enclosures above the line, §,, (S wall) < 8., < f,, (centre).)

Uh: 1.00 1.58 2.51 3.98 6.30 10.000
d/h

1.00 0.916 0.915 0.910 0.903 0.897 0.892
0.548 0.566 0.580 0.590 0.596 0.598

0.548 0.515 0.491 0.474 0.462 0.454

0.843 0.832 0.810 0.789 0.771 0.759

0.630 0.916 0.915 0.911 0.906 0.902 0.898
0.588 0.607 0.621 0.629 0.633 0.635

0.531 0.504 0.484 0471 0.462 0.456

0.827 0.805 0.780 0.758 0.743 0.732

0.398 0.921 0.925 0.925 0.924 0.923 0.922
0.635 0.656 0.670 0.678 0.682 0.685

0.520 0.501 0.487 0.477 0471 0.466

0.777 0.746 0.719 0.699 0.686 0.677

0.251 0.939 0.950 0.956 0.960 0.962 0.962
0.688 0.712 0.727 0.737 0.743 0.746

0.520 0.508 0.499 0.493 0.489 0.486

0708 | 0676 0.652 0.636 0.626 0.620

0.158 0.973 0.992 1.004 1.012 1.017 1.020
0.748 0.776 0.795 0.806 0.814 0.818

0.531 0.525 0.521 0.518 0.516 0515

0.640 0.615 0.598 0.587 0.580 0.576

0.100 1.024 1.050 1.068 1.080 1.087 1.091
0.818 0.849 0.871 0.885 0.894 0.900

0.553 0.552 0.551 0.551 0.550 0.550

0.589 0.572 0.561 0.554 0.549 0.547

Integration takes place over the volume of the enclosure. If the source is placed in
the centre, the limits are —1l to +3l, —3d to +3id and —1k to +3h. If the source is
placed in the middle of say the d x k wall, the limits for  become 0 to 1. f,, is a purely
geometrical quantity.

Message has recently derived an analytical expression for f8,, (Davies & Message
1992). Values for various shaped enclosures with the source @, at the centre are given
as the first entry in table 2.

As the source is moved progressively towards one wall, an increasingly large
fraction of the enclosure is located further from the source so the average
temperature falls. The f,, values for a wall-mounted source are given as the second
and third entries in the table. Intermediate values for a cubic enclosure are given as
the first entry in table 3.

A panel radiator is a distributed rather than a point source. To see what effect the
finite extent of a source might have, the calculations were repeated replacing the
single source @, by an array of nine sources forming a square in a vertical plane. Each
was of strength 3@, one was at the centre of the square, one at each of its corners and
one at the centre of each side. The square was of area (id)(1h), its centre was at a

Phil. Trans. R. Soc. Lond. A (1992)
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Table 3. Variation of f,, as the position of the radiant source is moved from the left wall to the right
wall of a cubic enclosure

fractional position 0.0 0.1 02 03 04 05 06 07 08 09 10
B (point source) 0.547 0.740 0.829 0.880 0.907 0.915 0.907 0.880 0.829 0.740 0.547
L. (9 point sources)  0.544 0.735 0.824 0.874 0.901 0.909 0.901 0.874 0.824 0.735 0.544

height of 1k and distant id from the I x 2 wall and taken to be located at a series of
distances from the d x 2 wall. The 9-point /., values too are shown in the table. They
differ little from the single point source values and it is clear that average radiant
temperature in the room depends relatively little on the shape of the source.

(b) The radiant star temperature due to an internal radiant source

As discussed earlier, the radiant heat from an internal source is to be treated as
though input at the 7, nodes for a black-body enclosure, or at the 7}, nodes if the
surfaces are grey. It is meaningless to suppose that it is input at 7. If, however, we
were to treat ), as though input at 7, the temperature it would generate there in
an enclosure with black-body surfaces at zero reference temperature is simply 7}, =
Q,/(XA4;h./p;). The non-dimensional value of this quantity can be written as

ﬂrs = ZA]/(ZAj/IBj)7

which is again a purely geometrical quantity. Its values are given as the fourth entry
in table 2. It will be seen that . lies between the values of f,, (source at centre) and
[, (source at wall) for the higher values of d/h.

(¢) The radvant temperatures due to bounding surfaces

It is clear that a sensor at some specified position, near the floor say, in an
enclosure can be modelled as shown in figure 5.

All the radiant conductances are small in the sense outlined above, but they will
be proportional to the solid angles the sensor subtends to the respective surfaces.
Thus the conductance to the floor might be relatively large. If the surfaces are at
different temperatures, 7}, will vary from point to point. One might guess that the
average value, 7}, might be estimated by the value of 7}, which is linked to the walls
by the large conductances of figure 3b.

This point has been examined recently by Davies & Message from which table 4
is reproduced. It includes a range of rectangular shapes: with -2 =1 in all cases,

=1 and d = 1 describes a cube,

{=0.1 and d =0.1, a telephone kiosk,

=1 and d = 0.1, a vertical square tile-like enclosure,

=10 and d=0.1,an enclosure like a plank on edge,
=10 and d =1, along square-sectioned corridor, and

=10 and d = 10, a horizontal square tile-like enclosure.

When d/h = 1, both ys increase moderately with increasing //A; this must be so
since the floor area increases as a fraction of the total area. When d/h decreases, the
vs similarly decrease.
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Ty,
T6b T2b
T,
T ’ T
T,

4b

Figure 5. The radiant thermal circuit for a sensor in a room. (Compare this with figure 3b.)

Table 4. Values of temperature within a black-body rectangular enclosure in which the floor is
maintained at unit temperature T and the remaining surfaces are at zero

(The upper value is the non-dimensionalized volume averaged observable radiant temperature,
Yo = Tp,/T, and the lower the non-dimensionalized radiant star temperature, y, = 1../T.)

Uh: 0.100 0.158 0.251 0.398 0.631 1.00 1.58 2.51 3.98 6.30 10.000
d/h

10.00 0.403

0.450

6.31 0.368 0.384

0420 0.434

3.98 0.325 0.345 0.359

0.374 0.396 0.410

2.51 0.275 0.208 0.314 0.325

0.310 0.340 0.359 0.371

1.58 0.220 0.245 0.263 0.276 0.284

0.237 0.268 0.290 0.304 0.314

1.00 0.167 0.190 0.209 0.223 0.232 0.239

0.167 0.194 0.214 0.227 0.235 0.241

0.630 0.119 0.140 0.157 0.171 0.181 0.187 0.192

0.111 0.132 0.146 0.155 0.161 0.165 0.167

0.398 0.082 0.098 0.113 0.125 0.134 0.141 0.146 0.149

0.072 0.086 0.095 0.100 0.103 0.105 0.106 0.107

0.251 0.054 0.066 0.077 0.088 0.096 0.102 0.107 0.110 0.112

0.046 0.055 0.060 0.063 0.065 0.065 0.066 0.066 0.066

0.158 0.035 0.043 0.052 0.059 0.066 0.072 0.076 0.079 0.081 0.082

0.029 0.035 0.038 0.039 0.040 0.041 0.041 0.041 0.041 0.041

0.100 0.023 0.028 0.034 0.039 0.044 0.049 0.052 0.055 0.057 0.058 0.059

1 0.018 0.022 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

The table demonstrates broad agreement between vy, and y,, that is, 7., and 7,
for those enclosures where d/h is not much less than 1. Some degree of agreement
might be regarded as intuitively obvious, but intuition is not a satisfactory guide.
For consider an enclosure having the shape of a very long and squat ridge tent, so
that it has effectively three isothermal surfaces exchanging radiation: the base, and
the two sloping sides whose combined area is little greater than that of the base. If
the base is at unit temperature and the sides at zero, the average observable radiant
temperature 7)., must be somewhere near 0.5. Now for such an enclosure, a delta to
star transform is possible exactly, and when this is done, it turns out that for quite

straightforward reasons, the radiant star temperature 7., tends to that of the base,
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172 M. G. Davies

unity. Thus in this case 7, is approaching double the value of 7., and so we cannot
assume automatically that 7, must be a satisfactory approximation to 7),: a
sufficient degree of agreement has to be demonstrated. The table indicates the degree
of agreement found.

(d) A star-based model for radiant exchange in a room

To have a simple model for radiant exchange for plant design purposes, it would
appear from these results that f,., may serve as an estimate of f,, that is to say, we
can estimate the average radiant temperature in an enclosure from the radiant star
temperature, assuming that the radiant input ¢, from an internal source acts at
T... The emissivities of the surfaces can readily be taken into account by inclusion of
their conductances in series with the star links.

T,s will not be a very accurate estimate for 7}, as the values in tables 2 and 4 show,
and some further caveats have to be noted.

1. Of the radiant input to an enclosure, only that part that traverses the
occupiable space and can be intercepted by sensors or occupants should be treated
as input at 7},. The radiation from the back of a wall-mounted radiator should be
treated as though input at the 7}, node for that wall and not at 7).

2. The local observable radiant temperature 7}, is not itself a unique quantity but
depends on the shape of the sensor: if the sensor is flat (not spherical as assumed
above) and the flat surface faces the source, it will record a higher temperature than
that when it is placed edge-on to the source. If the two surfaces of such a sensor were
not black-body but had different emissivities, we should have a further variation of
observed temperature with the orientation of the sensor. Thus 7)., depends upon both
the position of the source and the characteristics of the sensor.

Clearly, radiant studies can be conducted to take account of a great part of the fine
detail in a room, but it may not be necessary for the design of heating and cooling
appliances in most applications. A model somewhat along the lines of the above
model has been tacitly assumed for this purpose in the past and the present argument
serves to clarify its details.

(e) The star-based model for convective exchange in a room

Air movement in a room takes place under the action of infiltration forces (wind
effects and mechanical ventilation), under the action of the very weak buoyancy
forces arising from small temperature differences in the room (occupants, floor,
ceiling, ete.), and under the action of the rather stronger buoyancy forces on air
warmed at intentionally heated surfaces such as radiators. The movement is
complicated and has been the subject of a number of computational fluid dynamical
investigations in recent years.

For simple design purposes, however, it is usual to work in terms of a volume-
averaged air temperature T, (related to local or point values T, as 7}, is to 7},), and
to assume appropriate convective heat transfer coefficients h,; between 7, and the
various surface nodes at 7;. Working values of %, are often taken to vary between
about $ and § W m=2 K™1. The part of the heat input to the room that is input into
the air, @, is taken to act as a whole at the air temperature 7} . This model is also
a star-based model.

Phil. Trans. R. Soc. Lond. A (1992)
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radiative
input, Q.

convective
input, O,

Figure 6. The internal heat exchanges C; and S, for the two-star model which centre
on the air and radiant temperatures 7, and T},

(f) The two-star model for total exchange in a room

The total exchange in a room consists of the long-wave radiant and convective
exchanges, together with shortwave input, mainly solar. A model for the first two of
these simply consists in the superposition of the star-based radiant model and the
convective model so as to form the two-star model shown in figure 6.

A radiant input @, acts at 7}, and a convective input ¢, at 7},. Dry resultant
temperature 7, with its low conductance links to 7}, and 7}, can be included. The
model provides an acceptably detailed model for design purposes. To it of course
must be added the conductances associated with wall conduction and storage, and
the links associated with air movement. The ingress of air should strictly be modelled
as a ‘quasi-heat source’ of strength vs(7,,—17,,) W, where v denotes the ingress
volume flow rate (m®s71), s is the volumetric specific heat of air usually taken as
1200 J m™ K™, and 7}, the temperature of the incoming air, whether as a heated
or cooled ducted supply, by infiltration from an adjacent room, or by infiltration
from ambient. If the air infiltrates from ambient, however, the link can simply be
modelled as the conductance VW K™ and will be modelled in this way later.

(g9) Handling solar gains

Much of the solar radiation entering a room through a window falls on the floor and
the remainder falls on walls and furnishings. It is partly absorbed at these surfaces
and partly reflected. Specular reflections apart, this process can be modelled as was
explained for the long-wave gains: the radiation falling on the floor (@, ) is to be
totally absorbed at a W-like node. W, is linked to the floor by an absorptivity
conductance based on its short-wave absorptivity (replacing the earlier long-wave
emissivity or absorptivity) and to the other W, nodes by 4,/f; conductances. The
emittances of all the room surfaces for short-wave emission are zero so simple
network analysis provides values for the W;s. Thus the total solar radiation
physically falling on the floor generates a radiosity-like quantity W;. The actual
short-wave heat gain @, at the floor is W 4 /(1 —ay). This @, then acts as a
secondary pure heat source at 7}, and is lost by the usual processes of
conduction/storage, convection and long-wave radiation. The solar radiation
diffusely reflected from the floor can be handled by supposing that W, is linked to
Weeirs €te., by a delta or star-type network.
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4. Merging the radiation and convection mechanisms

The contentions of the last section led us to the position where we could imagine
room heat transfer taking place under the action of the quite independent processes
of radiation and convection ; they are ‘driven’ by separate temperatures 7. (as proxy
for 7},) and 7}, through conductances S; and €}, and it is only at solid surfaces that
they interact. Thus the heat flow from the room as a whole to the inner surface of
some wall (subsequently to be lost by conduction) is given as

Qeond = Swall(Trs - Twall) + Owau(Tw —Toan)-

Up to the 1960s, design methods for room heat transfer were only concerned with
two processes: the loss of heat from a room by ventilation and the steady-state loss
by conduction through an outer wall. The conduction loss through a wall of area 4
was computed from an expression of type

Qcona = Awan Ywan(To—15).

Here T7 is the general measure of the room temperature referred to in §1, 7} is
ambient temperature and wu,,;, is the transmittance (W m™2 K™!) of the wall, given as

wall

L 1 d, 1
uwall——k;'{'hc A kco’

where A, is the radiation coefficient (possibly including mention of surface emissivity),
h, the inside convection coefficient, d and A the thickness and conductivity of the wall
material (this term must be summed for a multilayer wall), and A, the outside surface
coefficient, typically of order 20 W m~2 K.

The wall construction and outer coefficient are not of current interest. It will be
seen, however, that the heat flow from the room as a whole to the inner surface of
the outer wall in question (at 7},,,;) has been treated as though driven by the single
index temperature 7, through the merged radiative/convective conductance,
Agan(hi+he):

Qeona = Awan i+ he) (T3 — Tyan)-

This form was justified in a loose way by saying that the room air and internal
surfaces (that is, all room surfaces apart from the one under consideration) were at
a common temperature, 7%, which drives both radiation and convection. All heat
input, both radiative and convective, was to be taken to be input at 7%. This is not
a logically sustainable argument but the computational procedure based on it works
well enough. The question thus poses itself: can we derive a form of index
temperature based on both radiant and air temperatures which serves to drive a
merged radiant and convective energy flow to a bounding surface? Can we find
logically acceptable forms for 7% and for (A, +h,.)?

It is the aim of this section to demonstrate that this is possible, though not in
general exactly, and to examine the properties of the index, the ‘rad-air’ temperature
T, so arrived at.

(a) The equivalence theorem

The mergence depends upon a circuit equivalence theorem. Consider the simple
circuit of figure 7a, consisting of air temperature 7}, held at some value by a pure
temperature source, linked to a surface at 7} via a convective link C; and further to
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radiant input,

(@) o,
Tav G L5 T,

o

ventilation fabric conduction
loss, Q, loss, O,
(b) withdrawal augmented
of excess, radiant input,

Q.C/S, yO,(0+C]/S)
T,

0, =X 0y

Figure 7. The two circuits to illustrate the equivalence theorem.

the radiant star temperature 7, through the radiant link S,. The surface 1 is taken
to envelop an entire enclosure, so that if the enclosure is rectangular in shape, all six
surfaces have the common temperature 77. A radiant heat source @, acts at 7. Some
of the input is lost by fabric conduction @;, from 7} and the remainder, @, = @, — Q;,,
from 7}, by ventilation. This is the two-star model for a single surface enclosure; it
is not necessary at this stage to include the fabric conduction conductance ¥, which
describes the heat loss from 7}, nor the ventilation conductance V describing the
ventilation.
It is clear that To=T,+(Q,—@n)/C,

and that T =T+ (Q,— Q1) /C, +Q,/8;.

Now consider the circuit of figure 7b, which is similar to that of figure 7a except
that 7, and S, and @, are not present. Instead a new node 7}, is located on C, defining
segment, conductances X and Y such that X/Y =0C,/8,(=a,; say); thus the
information on §; is not lost.

Since 1/X+1/Y =1/C,, it follows that

X =(8,+0)C/8 (= (14a,)C)
and Y=8,+0C,(=1+a,)8,).
The heat input is handled as an augmented input @, (1+«,) at 7., and a withdrawal

of the excess, @,a,, from 7,,; thus the total input remains the same.
The losses from 7], and 7} remain as before. Then

T =T +1Q: (1 +a,)—@nl/X.
The temperature 7' at the 7} node, possibly different from its above value, is given

s T = T, +1Q: (1+ ) — Qul/X — @/ Y,

which in fact will be found to equal 7;.
Phil. Trams. R. Soc. Lond. A (1992)
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o T ) T X
T;V Y;V Tra
S1+C1
b
v F (b) ¥ T, L,
Fl
(@)
T, T,

Figure 8. (a) The basic thermal circuit for an enclosure. (b) The equivalent thermal circuit.

Further, it will be found that 7,

n rom i
can be found from it as T =T (1+a)—T.,a,.

The C, S formulation (figure 7a) provides values of temperature at the radiant star
and surface nodes due to a heat input at 7). The X, Y formulation (figure 7b) provides
exactly the same information. Thus the one is the transform of the other.

Before considering the significance of this result it is of interest to see it in relation
to Norton’s theorem. Norton’s theorem states, replacing electrical by thermal
terminology, that a circuit of arbitrary complexity connected between two nodes can
be replaced by a pure heat source @)y in parallel with a conductance Cy connected
between the two nodes.

In the present case, the two nodes concerned are 7}, and 7], which differ in
temperature due to a heat input ¢),. Both the C, .S and the X, Y formulations provide
valid, if trivial, examples of Norton’s theorem. The present equivalence theorem
however addresses a different issue. Norton’s theorem serves to reduce a circuit of
any degree of complexity to a simple two-parameter equivalent: the X, Y theorem
transforms one elementary three parameter system to another three parameter
system. Alternatively stated, Norton’s theorem is not concerned in any way with a
third node: the X,Y theorem however demonstrates that a third node — 7, —
transforms to the 7}, node; they are alternatives and cannot appear simultaneously
in any circuit formulation.

The X, Y theorem can also be demonstrated by dispensing with the temperature
source at 7}, and linking it instead to ambient 7] (at zero) by the ventilation
conductance V and further linking 7} to 7}, via the fabric conduction conductance F,,
as is illustrated in figure 8. This approach is algebraically more laborious.

not explicitly included in the X, Y formulation,

(b) The single surface enclosure

Figure 8a illustrates the thermal circuit for the most elementary of enclosures, one
whose entire surface is at the uniform temperature 7;, which is excited by a radiant
source @, and loses heat to ambient by the ventilation and conduction mechanisms
V and F,. According to the X, Y theorem, it can be replaced by the circuit of figure
8b. It will be seen that the link between 7}, and 7] consists of the radiative and
convective mechanisms S, and C, in parallel to each other, and that the heat flow to
the surface is driven by the index temperature 7},, where

T.= (Slq}s-i_cl ﬂw)/(sl‘*’cl)

and is a weighted mean of the radiant star and air temperatures. It will be referred
to as the ‘rad-air’ temperature.

Phil. Trans. R. Soc. Lond. A (1992)
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Qf 1

Figure 9. (o) Heat exchange in a two-surfaced enclosure, and (b) its X, Y transformation.

This argument, which is exact, thus supports the traditional model of heat flow to
part of the envelope of an enclosure: 7}, is a rigorously arrived at form for 77, and
Sl + Ol for Awa]l h;' +Awal] hc‘

The conductive loss conductance L, acting between 7T, and 7, via T, is given as

i_1+d+1
Ly~ 8,40, A,A A, hy

and a conventional U value can be defined as u, = L,/A4, or

1 1 +d+ 1
Uy Byhthg A b,

The X, Y transformation is concerned with the handling of radiation alone; a heat
input of @, at 7}, or an input @, at 7} are handled in the normal way in either the C, 8
or X,Y formulations. The ventilation loss ¥V —a convective loss to ambient — can
also be included, but the direct loss of radiation to ambient through an open window
cannot be included since the point from which it is driven, 7., is excluded from the
X, Y transform. (Thus the transform represents an unsymmetrical handling of the
symmetrical circuit of figure 7a. Figure 7a could have been transformed so as to
permit a radiant loss to ambient, but then the ventilation loss would have to have
been excluded, and the ventilation loss is much the more important.)

Since the dry resultant temperature 7, is linked to the 7}, node, and the 7} node
does not appear in the rad-air model, 7, itself cannot appear in the rad-air model.
Explicit formulae for heat need and temperatures in terms of 7}, are given later.

A heat input of @, at 7, generates temperatures of

Q. (X+L,)
VX +XL,+L,V

QX
VX +XL,+L, V'

T, T, = and T, —T, =

(¢) The multisurface enclosure

The enclosure discussed above is the simplest possible enclosure that includes
radiant and convective heat inputs and losses by conduction and ventilation. To
generalize it to include a number of surfaces at different temperatures, we can
proceed as follows.

Figure 9a shows the internal links in an enclosure in which surfaces at two distinct
temperatures can be defined, together with their conduction losses @y, and @y,.
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It can be shown that in figure 9a,

Qr (‘81 +01) (Sz + 02) _Qfl Sl (‘82 +02)_sz‘sz (Sl +01)
S,0,8,+8,C, 0, +8,8,C,+C, S, C, ’

The essential feature of the X, Y theorem is that a central node 7}, should be linked
to the surfaces by conductances S; + ', and S,+C,, as illustrated in figure 956. It is
a matter for further enquiry as to what forms the X conductance and the heat
input at 7,, should take so that the circuit of figure 95 should reproduce the figure

9a values for 7}, 7, and 7,, but we will assume that, following the one-surface results,

X should equal (S+C)C/S, and that the input should be @, (1+C/S), where S =
S;+8, and C = (;+C,. The value of 1}, follows readily. Now the present value at
T., T, say, must from the definition of 7}, be

rsy
T, = Ty(S+0)/S— T, C/S.
It is then found from figure 95 that
Qr(Sl +S2 + 01 + 02) - (Qn + sz) (S1 +S2)
(81 +8,) (C,+Cy)

Clearly T, differs from 7). If, however, the values of these conductances are such
that C,/8, = C,/8, (equal to a say), 7}, assumes the same value as 7T':

Q, (1+0)— (@, + @s,)
C,+0,

Tis=Toy +

Tpo = Tt

];‘S = T;'S = ];V+

T, and 7, too have the same values in the two formulations if C,/8, = C,/S,. Thus
with the condition that C,/S, should equal C,/S,, heat flows expressed in terms of
the circuit based on the two nodes 7, and 7}, can be exactly expressed in terms
of the circuit centred on the one node, 7,,.

The idea is true for a three-surfaced enclosure. For suppose that C,/S, = C,/8S,; as
far as conditions at 7} and in the third branch are concerned, branches 1 and 2 can
be superposed to form conductances S;+8, and C; +C, with a loss of €, + @, from
the common node. Provided that C,/8, for its part should equal C,/S, or C,/S,, the
three-branch circuit can be transformed exactly to a one-star form. Clearly this
generalizes to a multisurface enclosure.

(d) C,/8, may not equal C,/S,

C, and §, are defined respectively as A,hk, and A,[(1—¢,)/¢,+ 5, k.. The
variation of C;/S; from surface to surface thus depends on the variation of
he;/[(1—€,)/e,+B,]7 . by is taken to have a central value of about 3 W m™ K~ but
may be around § or § W m~2 K~ for heated or cooled horizontal surfaces. Building
material surfaces have emissivities near to 0.9, though lower values may apply for
polished metal surfaces or low emissivity coatings. £ tends to 1 and } for relatively
small and large surfaces respectively. In realistic conditions therefore C,/S, will not
exactly equal C;/8,, but since the main determining factor for each is area, no gross
variation in the ratio from surface to surface is normally to be expected. In view of
the evident computational advantages for design purposes of the rad-air formulation,
it would appear sensible to define « as

O +0,+... (O

TS A8+ 8
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(We recall the identity that if
[ _ O+ Cy+...
S, =5, =o say,then o= S,%8,%..

(e) The structure of the rad-air index

It has already been remarked that the rad-air temperature 7, is a weighted mean
of the radiant and air temperatures in an enclosure. The radiant temperature 7},
however, has a structure, as a result of which we can place two alternative
interpretations upon 7},.

In a (radiantly) unheated enclosure, 7, must by continuity be

TS, +T,8,+...
S, +8,+...

Tis (unheated) = . é—ZT; S;.

The effect of a radiant input @), at 7}, is to raise 7} by an amount @,/S so we can write
T., = T,s(unheated)+ @, /S.

It follows that the rad-air temperature

T f— CTL'V + ST;‘S

"8+ 0 S+C
_ 0Ty +Sﬂs (unheated) @,
- 8+C S+C S+C’

@) (ii) (iii)

In the form, 7,, = (i) +[(ii) + (iii)] we have the interpretation already mentioned,
namely that 7}, is a mix of air and radiant temperatures, but the two components
of the radiant contribution are now made explicit. )

In the form, T\, = [(i) + (ii)] + (iii), 7}, is structurally similar to the well-known sol-
air’ temperature, due to Mackay and Wright nearly 50 years ago. Sol-air temperature
is an index temperature set up to handle solar gain at the outside of a wall or roof.
It is defined as

Q
I;a = 71)+ OSZI,

where @, is the absorbed solar gain on an area 4, and (| is the corresponding
convective coefficient between the area and ambient temperature 7,. We have the
following correspondences.

1. The present @, (long-wave gain) corresponds to @, (short-wave gain).

2. S+C, the total exchange between the surface and the index temperature,
corresponds to C,.

3. The terms [(i)+ (ii)] correspond to ambient temperature 7: if 7, and 7},
(unheated) happened to be equal (to 7} say), the terms simply reduce to 7;, the direct
equivalent of 7.

The term ‘sol’ in sol-air refers to just one component : the absorbed solar gain. The
term ‘rad’ in rad-air refers to two components: the radiant field due to the cool
enclosure surfaces, and the contribution due to radiation from an internal hot body
source.

Finally, it may be noted that dry resultant temperature 7, too depends upon the
three components, air temperature, the cool surfaces and any radiant source. It is the
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high impedance measure of temperature in an enclosure and is the logical correlate
with perceptions of thermal comfort. Rad-air temperature is the low impedance
measure of temperature in an enclosure and is needed to handle heat gains and losses.

(f) The purpose of thermal models

The purpose of a model is to relate the various heat flows and temperatures.

Estimates of these quantities can only be as accurate as the assumed characteristics
of the enclosure itself, as reflected in the values chosen for its conductances and in
what detail its means of excitation are presented. Furthermore, the model is
inherently incapable of estimating variation in a quantity for which a lumped value
has already been assumed: air temperature may vary by several degrees from floor
to ceiling, but a model which works in terms of the space averaged air temperature
T, cannot without further consideration provide information about the variation.

In the present context, models may be used in either of two ways. (i) For the design
of heating and cooling systems for buildings, the designer will normally select some
temperature, probably dry resultant temperature, and find the heat input needed to
sustain it. (ii) In the case of possible overheating, the designer ‘imposes’ a heat input,
probably resulting from solar gain, and estimates the daily temperature history in
the room. In either case, it may be useful to estimate consequent temperatures and
heat flows, and clearly a model adequate for the purpose must be selected.

The models considered here lead to manual methods and are developments of
traditional desk methods of design. They are simple to use and therefore can easily
be applied for routine design problems. The needs of complicated enclosures should
be investigated by using computer models that are capable of processing many
parameters.

The relations between heat needs and the various measures of enclosure
temperature as a function of choice of comfort temperature are treated in the next
section by using the rad-air model.

5. Calculation of enclosure heat needs

The calculation of the heating or cooling load for a room in a building is normally
found on the basis of the following information.

1. The client specifies the level of temperature 7, (dry resultant or comfort
temperature) to be established for comfort or other purposes (e.g. 20 °C).

2. Climatic data provide a value (the ‘design’ value) for the ambient temperature
T, below which the daily mean value falls on some acceptably low proportion of the
year (e.g. 5%). This is typically —2 °C for the U.K. but is lower in Northern Europe.

3. From the room dimensions, assumed ventilation rate and details of con-
struction, the services engineer computes the heat losses to ambient by conduction
through the building fabric and by air infiltration which results if the required indoor
temperature is to be maintained.

In this section, expressions are given for the heat need based on the rad-air
formulation of the last section. They parallel those given in the current CIBSE Guide
(1986), but are more succinct and logically based. They are expected to serve for the
general run of moderate sized rooms. Detailed computer programs should be used for
complicated enclosures, e.g. concert halls, atria, where the coarse assumptions
regarding air movement in particular, necessarily made for simple methods, may not
be adequate.
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equal very small conductances

T,©
Figure 10. The two-star model for an enclosure. Heat can be input at T, T, or
at any surface node, e.g. at 7).

O«
|‘ T, X L.
= VMV o—<
o, Q. (1+w)

Figure 11. The single or rad-air model for an enclosure. Heat can be input at 7, and at 7, say, but
the radiant input is split into an augmented input at T}, and withdrawal of the excess at 7,,.

(@) Heat inputs
Heat can be input to a room either by some sort of internal source such as a
radiator or at one of the surfaces itself, most probably the floor, by electric resistance
wiring or by hot-water piping.
The total output @, from an internal source will be split into convective and
radiant fractions as

Qaz(l_p)Qt and Qr=th'

(b) The two-star model for enclosure heat flows

Figure 8a showed the thermal circuit for the two-star model for an enclosure whose
entire surface was at the temperature 7). Figure 10 illustrates how it can be drawn
to include several surfaces. Explicit expressions are given in Davies (1990b) for @,
and @, in terms of 7, and the difference 7T,,—7,,. They can be evaluated
straightforwardly but do not lead to compact algebraic forms and will not be
discussed further here.

(¢) The rad-air model for enclosure heat flows

Figure 11 shows the corresponding single-star or rad-air model for an enclosure
with several surfaces.

It will be recalled from §4 ¢ that L, denotes the conductance between 7, and 7T;, via
T.. It is clear, however, that in an enclosure with several surfaces, L, L,, etc., are

Phil. Trans. R. Soc. Lond. A (1992)
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T, ,/V)\(/\, T, Ly h E(A) t;
1% L Cpv >(AU)
(@)
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o tao

Figure 12. (a) Figure 11 redrawn to merge the conductive conductances.
(b) ‘Fig. A5.1 basic conductance network’.

disposed in parallel to each other, and so can be lumped into the single conduction
loss conductance and we write

L = ¥ L; summing over all surfaces.

Figure 11 can be redrawn as figure 12a so as to have an appearance similar to that
of fig. A 5.1 in CIBS (1979) and CIBSE (1986) and shown here as figure 12b. 7}, V
and 7], correspond exactly to t,;, Cov and t,, respectively. L and 3(AU) only differ in
regard to their inner film components (the resistances of the solid elements and of the
outer film are handled identically). 7,,, however, differs fundamentally from ¢, and
X similarly differs from &, >(4).

In the present formulation, four parameters serve to describe the thermal
characteristics of the enclosure itself: L, V, X and a; one further parameter, p, is
needed if the room is heated by an internal heat source; dry resultant temperature
T, must be specified. From this information, the total heat need itself and certain
other temperatures can be estimated as is shown below.

(i) Heat input from an internal source

The heat inputs corresponding to an internal heat source consist of: (i) an input of
@, at T}, (ii) an input of @, (1 +«) at T},, and (iii) a withdrawal of @, a from 7},,. Heat
balance at these nodes thus leads to a series of expressions, first reported in Davies
(1991).

The total heat need is

VL+LX+XV
X+3L(I—o) + pBV(1 + ) — H(1—a)]

A number of functions of temperature also follow: the average air temperature,

7o X+ L—pL(1+a)
M0 X —a)+pV (L + @) —3L(1—a?)]

the radiant star temperature,

Qt (Tc_To)

(QL_TO);

= X—Loa+p[V(1+a)?+La(l+a))
© X+IL(1—a)+plV (1L +a)* —3L(1—a?)]

the difference between air and radiant star temperatures,

T L(l+a)—p[(L+7V)(1+a)?]
T T X R — o)+ pEV (1 + (1 =)
Phil. Trans. R. Soc. Lond. A (1992)
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finally, the rad-air temperature,

. X+pV(l+a)

o T X =@+ plV (1 ey~ (=)

ra "

(1. = T5)-

This last expression shows the relationship between the low impedance version 7},
and the high impedance version 7, of room temperature.

Some features of these equations may be noted.

1. The total heat need ¢, decreases as we move to a more radiative system (i.e. p
increases) if the ventilation loss V exceeds L(1 —a)/(1+c). A result of this kind is to
be expected on physical grounds.

2. Similarly 7, must decrease and 7, must increase as p increases.

3. The equations are inter-related. Thus the difference 7, — 7}, can be formed from
two of the other equations. Further, the total heat need can be expressed as

Q= V(1o —T)+ L(T;a—To)

and this leads to the value given above.

4. X proves to be numerically a large conductance. If its value is taken as infinite,
the heat need becomes @, = (V+L)(T,—1T,), and the various measures of room
temperature become identical: T, , = T, = T,, = T,. These are the properties of the
traditional building model based on the ‘air temperature’ 7", (discussed in §1), and
used up to the 1960s before the introduction of environmental temperature. The
model is still used and would appear to be quite satisfactory for a room that is well
insulated and has low ventilation losses.

(ii) Heat in at a surface

If @, and @, are zero, but a heat input ¢, acts at 7} — the floor say — it can be shown
that

_F (VX+XL+LV)
S Xy T

(I4+a)(—V)
= =TT oy,
Clearly, a heated floor must lead to a ‘cool air’ comfort condition. The floor
temperature is

T — (VX+XL+LV)y(L{*=FY+ X+ V)L,/F,
1 =

° X+V(1+a) Lo

A numerical example is given in Appendix C.

6. Discussion

It may be that there is no appreciable difference between the air and radiant
temperatures in a room, and if so, the designer can take both ventilation and
conduction losses to be driven by a common room temperature, which serves as
comfort temperature. This was the only model available up to the 1960s. The
environmental temperature model, a single-star model, was developed in the 1960s
to handle cases where such an assumption was inadequate. The fundamentals of this

Phil. Trans. R. Soc. Lond. A (1992)
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184 M. G. Davies

model, however, are flawed and the present article has shown how a single-star
model, the rad-air model, can be set up in a fully logical manner to serve in its stead.
It involves several approximations, however, which should be summarized.

1. The surface to surface radiant exchange cannot be exactly modelled by a
surface to star point approximation. The transformation, however, if carried out by
the least-squares procedure outlined in §2, is quite good as table 1 illustrates.

2. In applications, the designer is likely to use, not ‘original’ f# values, but § values
found by using the regression equation for £; and there is a standard deviation of
0.0068 between these values. The deterioration in fit is only marginal. (A default
value of § =2, the exact value for a cube, might prove acceptable for all surfaces.)

3. A further assumption that has to be made is that the radiant star temperature
T serves as an adequate estimate of the space-averaged observable radiant
temperature 7},. This assumption is not so satisfactory since 7}, varies according to
the position of the source and 7}, may lie outside of its range. Against this, it has to
be recognized that the local radiant temperature 7;, must itself vary in the
occupiable space from high values close to the source to low values remote from it
and that its value depends upon details of the sensor itself.

4. Lastly, the development of the rad-air model involved the assumption that the
ratio (;/8; was the same for every surface. As mentioned earlier, this is likely to be
near enough true in many cases, but low emissivities or high convection coefficients
on large surfaces might make the assumption inappropriate. The two-star model
might then be better suited.

In restricted circumstances, rad-air and environmental temperatures have the
same form. They are (i) that the enclosure be of cubic form so that f; = § for all
surfaces, (ii) that all its surfaces be black-body so that e¢; =1 and the Guide’s
E =1, (iii) that all surfaces have the same convective coefficient A,, and (iv) that
there is no radiative input @, to the enclosure. In this case, the two measures are
related in an identical manner to the remaining parameters:

Ty = Ty = Ghe T+ he 1)/ (Sl + R ),

where 7}, is the area-weighted mean surface temperature. (This result is independent
of the conductive losses F; and the ventilation loss V from the enclosure to ambient.)
In normal enclosures with high emissivity surfaces and moderate air speeds the first
three of these conditions are met approximately. Thus heat needs computed as
suggested by the numerical scheme of the 1986 CIBSE Guide are not likely to be in
error. Indeed, the Guide’s scheme is justified by the rad-air model rather than by the
reasoning the Guide itself advances.

This article has summarized several features believed to be new to building heat
transfer.

1. The well-established radiosity node transforms under linearization of differences
of fourth powers of temperature to the ‘black-body equivalent node’, 7},,. Long-wave
radiation from an internal source upon a surface can be treated as though fully
absorbed either at the radiosity node or the black-body node, and indeed solar
radiation can be handled similarly. This proves to be a simpler approach than
summing multiple reflections.

2. The radiant star network can be optimally designed by using least-squares
methods.

3. Itisnecessary to have two separate measures for the global radiant temperature

Phil. Trans. R. Soc. Lond. A (1992)
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in an enclosure: T, and 7,,. T} is physically meaningless but is easily calculated; 7,
is physically significant and is needed in connection with thermal comfort.

4. The justification for merging the convective and radiative flow from the room
as a whole to a surface is based on a seemingly new theorem (§4a) with its extension
to two or more surfaces. The rad-air temperature which results from the argument
is the indoor equivalent of the well-established ‘sol-air’ temperature.

5. Most of the links in a thermal circuit are ‘high conductance’ links and the
associated nodes are high conductance nodes. It has now become apparent however
that dry resultant temperature must be modelled as a low conductance (high
impedance) node.

It is to be hoped that recognition of these innovations and developments will serve
to remove the sloppiness that has so long bedevilled design aspects of building heat
transfer and that they may afford it the rigour that is normally to be found in applied
science disciplines.

Appendix A. Point of input of radiant energy

The problem of radiation from some source falling upon a surface is usually
handled by considering the absorbed and reflected fractions at the surface. We have
to show that it can equally be treated as though it is input at the radiosity node.
Following the usual approach, consider two large parallel planes of emissivities ¢, and
€, and at absolute zero, so that their emittances are zero. Suppose that a particle of
radiant energy H falls on surface 1. Since emissivity and absorptivity are equal,
the absorbed flux is He,. The remainder, H(1—¢,), is reflected to surface 2 and
H(1—¢,)e, is absorbed there. The pattern of absorption at the surfaces following
successive reflections is shown:

energy absorbed at surface 1 energy absorbed at surface 2
He,, H(1—¢))e,,
H(1—¢)(1—¢))ey, H(l—¢,) (1 =€) (L —€) €,

H(1—¢)(1—€,)(1—€)(1—€)€,... H(l—e)(1—6)(1—€)(l—€)(1—¢€)6,,....
On summing the infinite geometrical series, the total fluxes are
Hy = He,/(e;+€,—¢€16,), Hy=H(e,—¢€,6,)/(6;+€,—€,6y).

According to the Oppenheim formulation, the circuit for this situation is as shown
in figure 13.

The conductance between the radiosity nodes is simply 4 since F}, = 1. Elementary
circuit analysis readily shows that H, = He,/(e,+¢€,—¢€,¢€,), as did the reflections
method.

Clearly, in a multisurface enclosure the handling of the reflections becomes
complicated while the consequences of inputting radiation at one or more radiosity
nodes or black-body equivalent nodes can be found by routine circuit analysis.

Appendix B. Calculation of an optimal radiant star circuit

A procedure was sketched in §2 to find the optimal star configuration to represent
radiant exchange in a rectangular enclosure. As an illustration, we consider the
cuboid where 7 = 1.5849, d = 0.6310, and ~ = 1.0000. Only the ratios of these lengths

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 13. The thermal circuit for radiant exchange between two infinite parallel plates.

Table 5. View factors between surfaces

north east floor south west ceiling
north — 0.112 0.185 0.406 0.112 0.185
east 0.282 — 0.184 0.282 0.068 0.184
floor 0.293 0.116 — 0.293 0.116 0.183
south 0.406 0.112 0.185 — 0.112 0.185
west 0.282 0.068 0.184 0.282 — 0.184
ceiling 0.293 0.116 0.183 0.293 0.116 —

Table 6. Conductance between surface (m?)

north east floor south west ceiling
north 1.585 —0.178 —0.293 —0.643 —0.178 —0.293
east 0.631 —0.116 —0.178 —0.043 —0.116
floor 1.000 —0.293 —0.116 —0.183
south 1.585 —0.178 -0.293
west 0.631 —0.116
ceiling 1.000

are relevant: the cuboid could be taken to be a room of dimensions for example,
3.96 m x 1.58 m x 2.5 m in height. The I x  walls form the north and south walls, the
d x h walls the east and west walls and the ! x d surfaces the floor and ceiling.

The array of view factors F), for exchange from the surface in the column to the
surface in the row is as listed in table 5. There are nine numerically distinct values
here. (It is a matter of chance that three of them are nearly the same.) For reasons
of symmetry,

F(north, east) = F(north, west) = F(south, east) = F(south, west)

and that
F(north, south) = F(south, north), etc.

The sum of all view factors on a row is unity.

The conductance between the north and east walls for example is
(1.5849 x 1.0000) x 0.112 = 0.178 m?2. There are six such numerically distinct values.

In the matrix equation GW = Q, the G matrix is as given in table 6. The matrix
is symmetrical. The sum of the off-diagonal elements in any row or column is the
negative of the diagonal element. (Generally speaking, the diagonal element in a
matrix of this kind exceeds this sum because it includes links external to the system,
but in the present case, there are no additional conductances providing any external
connections to the array of radiant conductances.)

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

OF

-l ()
52
=0
=
-

oU
<
o(h
=%
L
o=

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The basis for a room global temperature 187

Table 7. Net resistances between surfaces (m=2)

north east floor south west ceiling
north — 1.924 1.336 0.898 1.924 1.336
east — 2.268 1.924 2.968 2.268
floor — 1.336 2.268 1.690
south — 1.924 1.336
west — 2.268

ceiling —

As explained, the matrix inverse to the first five rows and columns of G has to be
found, from which the exact net resistance Rf, (units m~2) between any two nodes is
calculated (see table 7). The matrix is symmetrical and again,

R4(north, east) = R4(north, west) = R4(south, east) = R4(south, west).

The north and south walls provide the largest areas in the room and the resistance
between them, 0.898 m™2, is accordingly the smallest in the array. The east and west
walls constitute the smallest surfaces and have the largest resistance.

These exact resistances are used to compute the approximate resistances R}, of the
star-based system. Starting with guessed values for the f;s, the sum of products
is formed:

S, = X 3 (65— G%) (B —Ri),
ik

where G, = 1/Rf, and G}, = 1/R}_. S, can be minimized. A numerical procedure to do
this is based on the idea that near its minimum, S can be expressed approximately
as a parabaloid. If x denotes f,/4,, etc.,

S, = ax®+by® +c2®* + dey + eyz + fax + g + hy + j2 + k,

where the coefficients are functions of the delta resistances and the current set of star
resistances.

With the assumed initial values for the fs, that is, for the point (x, y, ), the value
for S, can be found, together with the three values of its first differential coefficient,
the three values of type 9°S,/dxz® and the three terms of type 0%S,/0x0y. In the
parabolic approximation, 8%S,/dx dy for example is equal to d; the coefficients a to f
can be found in this way, and knowing the niumerical values of the first differential
coefficients, we can find the further coefficients g, 2 and j.

Now the minimum of the parabola, at the point (2',%,2’), is determined from
relations of type 0S,/0x =0 or 2ax’+dy +f2 = —g, and two similar equations,
solution of which gives (¥',y’,2’). (2, y’,2’) provides a better set of £ values than did
the initial choice at (x,y,2). The process is continued until a solution of stated
accuracy is reached.

The NAG Library routine EO4EAA based on this process was applied to a series
of enclosures as listed in §2. For the enclosure discussed above,

P(morth) = 0.730, J(east) =0.915 and p(floor) = 0.856.

The largest surface has the smallest 8 value and conversely. The minimum value of
S, was 0.003513. This is formed as the sum of 15 positive products so the quantity
dso = V/(§#S,) can be interpreted as the ‘root mean square fractional difference in

Phil. Trans. R. Soc. Lond. A (1992)

8-2


http://rsta.royalsocietypublishing.org/

A

R
\\ \\
P

/

|\
L
Y

A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /3%

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

188 M. G. Davies

resistance (or conductance, it matters little which) between the star and delta
networks’. Here, 8, in percent is equal to 1.53 and is entered in this form in
table 1.

Computations on the complete set of enclosures provided the regression equation
for £ given in the main text and the values so estimated in the present case were
pnorth) = 0.740, p(east) = 0.923 and A(floor) = 0.856. These are of course not
optimal and so will lead to a somewhat larger value of S, than that leading to 1.53.
The corresponding value of d, dg,, was 1.72. See table 1.

The actual star resistance between say the north and south walls might be greater
or less than the exact value. The value of (R}, /Rj,—1) indicates the fractional error
in the star resistance between surfaces j and k. Its values in the current case, with
R}, computed from regression equation f values, are listed :

north-south east-west floor—ceiling north-east east—floor floor-north
0.0408 —0.0142 0.0148 0.0033 0.0231 —0.0084 °

The largest and smallest of these errors are noted in table 1 as percentages.

Appendix C. A worked example

As an example of use of the rad-air model, the conductive and ventilation losses
of a test enclosure will be calculated ; values for comfort and ambient temperatures
T, and 7T, will be specified and so the total heat need and values for the various
enclosure temperatures will be found. (It follows the example given in Davies (1991).)

Consider an enclosure 4 x 3 x 22 m® with three vertical walls which for the purposes
of the present plant sizing can be taken as adiabatic. There is a single-glazed window
in the outer (4 x 21 m?) wall through which there will be a sizable conduction loss but
the window will be assumed to be coated to give it a low emissivity. Further but
smaller losses will be assumed through the remainder of the outer wall and through
the ceiling and the floor leading to a value for the conductive transmittance f;. (f;
denotes the transmittance between a wall interior surface and ambient. It depends
upon the thicknesses and conductivities of the wall layers, together with the film
coefficient of the outer film but not of course upon the internal radiative and
convective processes. It is sufficient here to assume a value for f; without specifying
the construction that leads to it.) Normal values of emissivity at all surfaces other
than the window will be assumed, and appropriate convective coefficients will be
selected. A ventilation loss will be assumed. Each surface will be taken to be
isothermal.

A ventilation rate of two air changes per hour will be taken. Table 8 provides
values for the surface parameters. They are based on expressions given earlier. So

a=X0,/38, = 174.0/345.52 = 0.5036,

X =(1+a)C, = 1.5036 x 174.0 = 261.6 W K1,

L =3575 WK™,

V' = 1200 x (2/3600) x (4.0 x 3.0 x 2.5) = 20.0 W K1,

This information summarizes the heat transfer characteristics of the enclosure.
The procedure has been illustrated here to show the flexibility in handling different
convective coefficients, emissivities and enclosure geometries. In routine use,

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

189

The basis for a room global temperature

Downloaded from rsta.royalsocietypublishing.org

gL ee 2o GPe 0FLY 069
19'%1 0L8'¥ €L CLTHF0  T6ES0  F0 021 0% 003 0'¢ — Mmopurm
e 6%9°0 66'T%  €390T  T6E80 60 012 0'¢ L0 0L — [[es 19300
0 0 8665 €260'T 26880 60 0'0¢ 0'¢ 0 007 07%Ge [[em Tea1
0 0 69CF 98660  F0680 60 ¢'eT 0€ 0 oL CEx0¢ Tes opis
0 0 69°2F G866'0  F0680 60 ¢'ZT 0'¢ 0 9 ¢ZX0¢g [[es opIs
$8°L €690 er'aL 8Z0T'T  L96L0 60 0¥ ce L0 02y 0exX0¥F Surpreo
GL8 08L0 €F'GL 820T'T  L96L'O 60 0'%2 0z 80 021 0EX0F 100y
M GTempm) (M) ‘a ‘d 5 GIM MM (MmM) W/ suosuewp soeIns
‘goI®
T n s 0 K — 4 “ssop
h v 7N v s v ’ uoronpuod
I9JSURI} [[BIOAO 93uryoXa SArRIpRI 93URYDOXS 9AI}OOATOD pIemino

supgpwind 200fins W00y ' JAqE],

Phil. Trans. R. Soc. Lond. A (1992)

Y7 ALIIDOS 1o Y7 ALIIDOS 10
V 1vAOY THL SNQLIvsNviL /g TEAONL AL oo T


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

, \

a
fA \

‘A

/an \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

190 M. G. Davies
5 —
warm air
climate
M
~ © ) @1
~ 0
! . ®) (o) (@ radiant fraction, p
& N
cool air
climate [
5L

(@)
Figure 14. Variation of 7, — 7., with form of heating system for the worked example. (a) Forced
warm air heaters; (b) natural convectors and convector radiators; (¢) multicolumn radiators; (d)
double and treble panel radiators and double column radiators; (e) single column radiators, block
storage heaters; (f) vertical heaters; (g) high temperature radiant systems.

however, such detail may not be needed. The designer might start with conventional
values for these quantities: take

a=3 X=45%4; L=23XA,U,
using conventional U values with § = §,
V = 1200 (n/3600) x volume, as above.

If, however, the calculation has to be extended to compute surface temperatures,
the correct radiative and convective coefficients for the surface must be used. The
inside film transmittance k, for surface j is given as

__ &M
7 1—6j+ej,6‘j+h°7'
With conventional values of ¢=09, A =57Wm2K™, =% and Ay =
3Wm?2K™, h;=903Wm K™, or a resistance of 0.11 m* K W™'. Values of
surface resistance given in the 1986 CIBSE Guide, Table A 3.5 range from 0.10 to
0.14 m* K W1,
(@) Hot-body internal source

With the above values, the total heat need @, is given by
Q, = 56.56 (T,—1,)/(1+0.034p).

Thus the heat need depends a little upon the choice of heating system and for this
enclosure decreases very slightly as one progresses towards a more radiant system.

The choice will have a marked effect, however, upon whether the system produces
a ‘warm air’ or a ‘cool air’ quality of comfort, that is to say upon the value of
(T, —T.5), which is given as

0.20—0.47p
140.034p

Suppose that 7, = 0 °C and that the dry resultant temperature 7}, is to be 20 °C.
Figure 14 shows the value of (7},—1,) for various means of heat input.
Suppose that the heating system to be chosen is a double column radiator,

ﬂw—ﬂs = (7:3—7:))
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centrally placed, so that the whole of its radiant output is useful in heating the space.
(This avoids the complication of separate consideration of the radiation leaving the
back of the radiator if it had been placed against a wall.) According to the 1986
CIBSE Guide, §A9, the fraction of heat emitted radiantly is about 0.3, so we take
p=0.3.

It follows from expressions in §5 that the total heat input is 1119.8 W, of which
784.2 W is input convectively and 335.6 W radiatively. 411.6 W is lost by ventilation
and 708.2 W by conduction through the fabric. (These values are quoted to four
significant figures for computational purposes only. It is recognized that in practice
such estimates may well be uncertain by perhaps 10%.)

The average air temperature 7, is 20.58 °C, the radiant star temperature 7}, =
1942 °C, T,,—T,, = 1.16 K, and the rad-air temperature 7., = 19.81 °C.

Thus there is little variation between the various measures of temperature in this
case, and in particular the two global measures, 7;, and 7, are very close.

(b) Floor heating

According to the equations in §5, the heat input to the floor to maintain 7, = 20 °C
is 1213.5 W, and the difference 7, ,— 7T, = —2.17 K. Rather more heat is needed than
was the case for an internal source of heat.

The temperature of the floor is calculated to be 29.75 °C. Evidently, underfloor
heating would be unsuitable in this case.

Solar gains absorbed at the floor are to be handled similarly.
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